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A blind deconvolution algorithm with modified Tikhonov regularization is introduced. To improve the spectral
resolution, spectral structure information is incorporated into regularization by using the adaptive term to dis-
tinguish the spectral structure from other regions. The proposed algorithm can effectively suppress Poisson noise
as well as preserve the spectral structure and detailed information. Moreover, it becomes more robust with the
change of the regularization parameter. Comparative results on simulated and real degraded Raman spectra are
reported. The recovered Raman spectra can easily extract the spectral features and interpret the unknown chemi-
cal mixture. © 2014 Chinese Laser Press

OCIS codes: (300.6450) Spectroscopy, Raman; (100.3190) Inverse problems; (300.6320) Spectroscopy,
high-resolution.
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Raman spectra often suffer from common problems of bands
overlapping and Poisson noise [1,2]. Raman spectra measured
by a spectrophotometer can be mathematically modeled as

g�v� � Poisson�s�v� ⊗ h�v��; (1)

where g�v� and s�v� are the measured Raman spectrum and
actual spectrum, and h�v� stands for the instrument function,
which mainly collects the instrumental broadening. Poisson�·�
denotes the Poisson noise. The goal of blind spectral decon-
volution is to seek the best estimates of s�v� and h�v� based on
measured spectrum g�v� and prior information about the ac-
tual spectrum scene. Over the years, many deconvolution
methods have been developed, such as high-order statistic [3],
Fourier self-deconvolution (FSD) [4], the Wiener filtering
method [5], maximum entropy deconvolution [6], and the
semi-blind deconvolution method [7,8]. In [9], Katrasnik et al.
extended the Richardson–Lucy (RL) method to the spectros-
copy field. Nevertheless, owing to the ill-posed nature of in-
verse problems, this algorithm often lacks stability and
uniqueness. The amount of noise will increase with the iter-
ation process. And the algorithm must be stopped before
the noise rises above a certain level. Tikhonov regularization
(TR) was initially introduced as a regularizer for spectral
processing in [10,11]. Since then it has been used extensively
and with great success for inverse problems because of its
ability to suppress noise.

The maximum a posteriori (MAP) technique is a commonly
used approach to estimate the actual spectrum s�v� given the
measured spectrum g�v�. This technique maximizes the
conditional probability of an actual spectrum given a certain
measured spectrum. Based on Bayes’s rule, MAP can be con-
verted to one likelihood probability multiplied by two priori
probabilities. In this paper, the MAP framework is employed
to construct the spectral deconvolution model. Considering

the cases in which the data are contaminated by Poisson
noise, the intensity of each pixel g�v� in the measured
spectrum is a random variable that obeys an independent
Poisson distribution. Hence the likelihood probability can
be written as

p�gjs; h� �
YL
v

�s�v� ⊗ h�v��g�v�
g�v�! expf�−s�v� ⊗ h�v��g; (2)

where L denotes the spectral length.
To estimate s and h, iterative deconvolution algorithms can

be used. One option is to use the RL method [9], which min-
imizes the following functional to maximize Eq. (2):

E1�s� �
X
v

�−g�v� log�s�v� ⊗ h�v�� � s�v� ⊗ h�v��: (3)

The RL algorithm does not converge to the solution be-
cause the noise is amplified after a small number of iterations.
In order to get better convergence, the RL method with Tikho-
nov regularization [11] (TR-RL) was proposed, and the cost
functional to be minimized is then

E2�s� �
X
v

�−g�v� log�s�v� ⊗ h�v�� � s�v� ⊗ h�v�� � αj∇sj2;

(4)

where ∇s � �si − si�1�∕2. Symbol α is the regularization
parameter, which plays a very important role, controlling
the constraint strength. If α is too small, the noise will not
be well suppressed; conversely, if it is too large, the spectral
structure will be removed. This means that the regularization
parameter α needs to be adaptively adjusted according to
spectral structure information. For better structure informa-
tion preservation, in the TR term, we added a nonnegative
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monotonically decreasing function w�j∇sj� to control the
regularization about the spectrum [12]:

w�j∇sj� � 1
1� �∇s∕k�2 ; (5)

where k is a constant between 0.01 and 1. Combining the adap-
tive term w�j∇sj� into the TR model, the modified Tikhonov
regularization (MTR) model with spectral structure informa-
tion is defined:

MTR � w�j∇sj�j∇sj2; (6)

which can distinguish three types spectral regions (flat, noise,
and structure regions), but TR cannot distinguish those re-
gions. The difference is shown in Fig. 1. Substituting the
TR term in Eq. (4) with MTR in Eq. (6), we introduce the total
functional:

E�s; h� �
XL
v

�−g�v� log�s�v� ⊗ h�v�� � s�v� ⊗ h�v��

� αw�j∇sj�j∇sj2: (7)

Minimizing Eq. (7) by the expectation maximization (EM)
algorithm, the numerical iterative algorithm is then obtained,

ŝ�k�1�
t � ŝ�k�

�
ĥ�k��−v� ⊗

�
g

ŝ�k� ⊗ ĥ�k�

��
;

ŝ�k�1� � ŝ�k�1�
tP
vŝ

�k�1�
t

; (8)

ĥ�k�1�
t � ĥ�k�

�
ŝ�k�1��−v� ⊗

�
g

ŝ�k�1� ⊗ ĥ�k�

��

×
1

f1 − αw�j∇ŝj��∇2ŝ�g ; (9)

where the superscript indexes the number of the iteration.
The term w�j∇ŝj� is calculated by the previous iteration
result ŝ�k�.

Summarizing, two good advantages of MTR-RL can be
drawn: (i) for the flat region because w�j∇ŝj� is close to 1,
which means a large TR strength is enforced to these points,
and then the noise will be suppressed; (ii) for structure re-
gions because w�j∇ŝj� is small and almost close to 0 and
weakens the TR strength, so the spectral detail and structure

will be preserved. In other words, MTR-RL has the ability to
adaptively adjust the regularization strength according to the
spectral structure information.

To quantitatively evaluate the deconvoluted spectra,
three metrics, the normalized mean square error (NMSE)
‖s − ŝ‖2∕‖s‖2, the full width at half-maximum ratio (FWHMR)
1
N

PN
i FWHM�i�

g ∕FWHM�i�
s [9], and the noise suppression ratio

(NSR)
P j∇gj∕j∇ŝj, are employed. FWHM�i�

g and FWHM�i�
ŝ are

the widths of the bands in the measured spectrum g and
deconvoluted spectrum ŝ, respectively. NSR was defined as
the ratio of the total variation of the measured spectrum g to
the total variation of the deconvoluted spectrum ŝ, which
is the noise attenuation measure. Among these three metrics,
the NMSE requires the existence of a reference spectrum s.
Therefore, it can only be used in simulated experiments.
FWHMR and NSR, which are nonreference measures of spec-
tra, can also be used in experiments performed on real Raman
spectra. It has been verified that the two metrics can reflect
the width reduction and noise suppression [9]. The larger the
values of FWHMR and NSR, the higher the spectral quality.

To demonstrate the effectiveness of the proposed method,
we execute simulations with three test spectra under the
Poisson noise process. The spectra come from the demo spec-
tral library of Bruker Optics Incorporation. They were
degraded by a Gaussian function with standard variance 12
[shown in Fig. 2(b)]. The degraded spectrum becomes much
smoother and less resolved, in which the bands become wider
and lower. For instance, it is difficult to distinguish the peak at
1215 cm−1 from that at 1163 cm−1. Then the overlap spectrum
was contaminated by Poisson noise [illustrated in Fig. 2(c)].
Three type regions can be defined according to the spectral
gradient value, which is shown in Fig. 1. For comparison,
the FSD, RL, and TR-RL methods were adopted.

Figures 2(d)–2(f) show a simulation example of restoration
by RL, TR-RL, and MTR-RL. We chose α � 0.05 and 200 iter-
ations. Comparing Fig. 2(d) with Fig. 2(f), it can be found that
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Fig. 1. Illustration of TR and MTR constraints on three types: flat
region, noise region, and structure region. (a) Tikhonov regulariza-
tion. (b) Modified Tikhonov regularization can distinguish different
regions.
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Fig. 2. Simulation experiment. (a) Raman spectrum of methyl
formate (C2H4O2) from 400 to 1500 cm−1. (b) Overlap spectrum.
(c) Contaminated by Poisson noise. (d) RL. (e) TR-RL. (f) MTR-RL.
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MTR-RL obviously reduces the artifacts as well as better pre-
serves the spectral structure. The effects of the regularization
parameter were also investigated. For the TR-RL and MTR-RL
methods, the NMSE of the deconvoluted spectrum versus
varying regularization parameter α on the simulated degraded
spectrum of Fig. 2(c) is plotted in Fig. 3. The MTR-RL method
appears more robust with the change of the regularization
parameter at a wide range from 10−1.75 to 10−1 at intervals
of 0.005. However, the change of regularization parameter
α has a great impact on the performance of TR-RL. In particu-
lar, the NMSE value increases dramatically when the regulari-
zation parameter becomes large.

Moreover, the NMSE of degraded spectra and the best
deconvolution spectra by the three methods are compared
in Table 1. The best deconvolution spectrum is selected to
be the one with the lowest NMSE when the regularization
parameter changes. It can be seen that the MTR-RL method
has achieved the smallest NMSE among the three methods.
The NMSE versus the number of iterations by the three meth-
ods on the Raman spectrum [methyl formate (C2H4O2)] is
shown in Fig. 4, where the convergence is also highlighted.

Finally, the proposed algorithm was applied to real Raman
spectra. Owing to photon-limited detection, Raman spectra
are always corrupted by Poisson noise. We tested eight
Raman spectra, which are downloaded from [13,14]. We

use α � 0.05, starting with a 69 nm Gaussian function with
a standard deviation of 2 for the initial instrument function.
In order to save space, only two of them are illustrated.
Figure 5(a) shows the 600 length spectrum of Cr:LisAF crystal
from 300 to 900 nm. The two peaks at 631 and 661 nm overlap
each other, and only two pinnacles can be distinguished.
Figures 5(b) and 5(c) are the deconvoluted results by TR-RL
and MTR-RL. The two peaks at 631 and 661 nm are split into
four peaks at 580, 604, 631, and 663 nm, respectively. How-
ever, the TR-RL result only has three peaks. The instrument
function is plotted in Fig. 5(d), whose width is about 69 nm.

Figure 6(a) shows the 690 length Raman spectrum of (D+)-
glucopyranose [14] from 10 to 700 cm−1. Figure 6(b) shows
the deconvolution data. Here we choose α � 0.05. The peak
at 406 cm−1 is split into two peaks at 395 and 406 cm−1, re-
spectively, and the peak at 542 cm−1 is separated into two
peaks at 542 and 557 cm−1, respectively. The spectral resolu-
tion has been improved considerably, and the distortion of the
relative intensity can be revised to some degree. The same
spectrum has been deconvoluted by [15], but the deconvo-
luted result seems rather noisy. Table 2 shows the FWHMR
and NSR values of all the eight Raman spectra. It is seen that
all the blind deconvolution methods raise the FWHMR and
NSR, but the proposed method obtains the highest values.

This paper has presented a new spectral blind deconvolu-
tion method for Raman spectrum with Poisson noise. The pro-
posed method can automatically balance the regularized
strength between different spectral structures. Comparative
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Fig. 3. NMSE versus regularization parameter of TR-RL and MTR-RL
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Table 1. NMSE of Measured Spectrum and the Best

Deconvolution Spectrum (with the Lowest NMSE by

Different Algorithms)

Spectral Deconvolution by

Spectra Degraded Spectrum FSD [4] RL [9] TR-RL MTR-RL

C2H4O2 0.0451 0.0272 0.0231 0.0240 0.0219
C9H10O2 0.0223 0.0195 0.0136 0.0105 0.0092
C4H4S 0.0480 0.0315 0.0231 0.0198 0.0184
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Fig. 5. Real Raman spectrum experiment. (a) Cr:LisAF crystal [13]
from 300 to 900 nm, deconvolution by (b) TR-RL and (c) MTR-RL.
(d) Estimated instrument function.
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Fig. 6. Real Raman deconvolution experiment. (a) Raman spectrum
of (D+)-glucopyranose [14] from 10 to 700 cm−1. (b) MTR-RL result.
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results on simulated and real spectra show that MTR-RL can
effectively reduce the Poisson noise and preserve the spectral
structure information. Moreover, it becomes more robust with
the regularization parameter, which makes the method more
preferable in practical applications. The recovered Raman
spectra can easily extract the spectral features and interpret
the unknown chemical mixture. Although the application con-
sidered here is Raman spectroscopy, the method is more gen-
erally applicable to fluorescence data, and so on.

Nevertheless, there may still be room for improvement in
our proposed method. In fact, the instrumental broadening
usually varies with wavenumber in dispersive Raman
spectrometers, because of the monochromator. Thus, the in-
strument function h�v� is not necessarily unique. We will
examine this in our future work.
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